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One of the holy grails of Artificial General Intelli-
gence (AGI) is true comprehension. It would hypothet-
ically function without the use of corpora; and mor-
phological and semantic analysis. More importantly,
it would require a certain level of access consciousness
(A-consciousness) [2] and awareness of causes, effects,
association, relevance, immediacy, and consequences.

In this paper, we’re going to tackle the challenges
that prevent us from scratching the surface of AGI; the
mainstream approaches to Al; the methods that will
bridge us towards achieving a more general form of
AL and how we'’re going to ultimately find the junc-
tion points between structured and unstructured data.
In this paper we present Valmiz—a collection of agent-
based knowledge and discovery systems; the methods
and techniques they use to approach the low-hanging
fruits of AGI; and the principles and concepts which
can aid in creating the implementations and structures
to facilitate the discovery of early true machine com-
prehension, with the use of modern computing tech-
nology.

1 Introduction

The vast majority of the way artificial intelligence is
being approached now is through statistical and prob-
abilistic methods. Large data sets are being used to
train systems to emulate a narrow subset of the way
humans think and solve problems. These intelligent
machines are only able to produce meaningful results
from existing data. We have seen systems that are able
to render faces of humans that do not exist in real life.
We have seen systems that learned how to punch and
kick. The common problem with such systems is that
they rely on existing data in order to simulate learning
new skills. The issue that arises from that is confirma-
tion bias—the systems are only able to produce results
based on what they already knew. We, humans, would
only like to believe that they are producing something
completely novel because we already conditioned our-
selves to accepting them, beforehand. Truly unique
composition is absent.

The way humans learn to communicate using lan-
guages and subsequently understanding them, how-

ever, is different. Let’s take the case of a human child.
One doesn’t teach the parts of speech nor the relation-
ship of the language components to them. They learn
to communicate using a gradual learning approach—
one that involves continual exploration. A child uses
the constant feedback loop between them and another
communicator. By having a rapid and fluid loop, a
child’s association with sounds becomes associative
and causative with the environment that they are expe-
riencing and perceiving. In a similar vein, if you were
teaching a child how to open a door, you wouldn’t
open the door for him and then describe at length how
the door looked when it was open. No, you would
teach how to turn the doorknob so that he could open
the door himself [9].

2 Background

It is easy to make a computer display adult-level per-
formance when given tasks like solving board games,
but it is impossible to make them display the abili-
ties of a typical one-year-old when handling problems
about perception and seeing the world around them
from a zeroth position [7]. The main lesson of thirty-
five years of Al research is that the hard problems are
easy and the easy problems are hard. The mental
abilities of a four-year-old that we take for granted—
recognizing a face, lifting a pencil, walking across a
room, answering a question—in fact solve some of the
hardest engineering problems ever conceived [8].
Contemporary Natural Language Processing (NLP)
systems work by using training models and existing
data sources to teach a machine what are the Parts of
Speech (PoS) and Universal Dependencies (UD). Such
systems are able to tag an input text what are nouns,
verbs, etc. because it already knows about them, be-
forehand. By ingesting huge corpora and comparing
the results of analyzing them with another data set,
these systems became good at identifying such things.
Because of the way such NLP systems work, a sig-
nificant majority of them are designed to only handle
the most common spoken languages—English, Arabic,
Chinese, French, German, and Spanish. Corpora for
these languages are not only abundant but also has a
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long history. Because of this, it makes it easy to cre-
ate training models. The problem, however, is that
text processing becomes limited to data that is avail-
able. This implies that a system trained to handle and
recognize an X set of languages, will have difficulties
and produce inaccurate results when tasked to handle
languages outside of those sets.

Another prevalent issue with NLP systems now is
whether they truly understand the text or they have
merely run its input through a processor. To truly un-
derstand, in this context, means to have the compre-
hension skills of an average adult human. It also im-
plies that an equivalent mental model is created based
on the inputs that it has received. The problem is
particularly evident with the Chinese room argument
[11]. It supposes that a closed room exist with two
slots on the outside—one for questions and another
for answers. A questioner would slide in a piece of pa-
per that contains Chinese text, and on the other slot
comes out the answers. Inside the room lives an op-
erator who doesn’t understand Chinese, only under-
stands English, and has a manual for written in En-
glish for matching questions to answers. The manual
says that if he sees Chinese characters that match a cer-
tain shape and sequence, he would respond with the
specific matching Chinese text found in the manual,
using the answer slot on the room. From the ques-
tioner’s standpoint, whatever is inside the room pos-
sesses the ability to both understand and speak Chi-
nese.

Let’s take the case of Sophia, the robot that was
developed by Hanson Robotics under the guidance of
Ben Goertzel. When she debuted, it was made to ap-
pear that she possessed human-level intelligence and
that she’d be able to converse like a human to another
human. It was also shown that she’s able to convey
facial expressions and body gestures, to go along with
her speech. It was soon discovered that she’s not any
different from a marionette—human operators were
necessary in order for her to operate “correctly.” For
whatever it is worth, she’s a chatbot with a face [3].

Several morphological systems have been designed
in the past decade. They approach linguistics via the
textual representations of language and, that text is
most often dissected into parts and how they relate
to each other. Systems such as CoreNLPH and spaCYE
handle linguistic interactions using morphological syn-
tactic analysis of corpora. In addition to that, they
have strong a dependence on ontological databases
of what constitutes components. These systems are
not able to operate inside a vacuum. They need infor-
mation stored elsewhere in order to begin processing
knowledge. They need seed knowledge.

Most, if not all, language systems rely on us-
ing information that has been secured beforehand—

lhttps://en.wikipedia.org/wiki/Sophia

(robot)
2https://stanfordnlp.github.io/CoreNLP/
3https://spacy.io/

frontloading. They work exclusively using the answer
model, wherein they already know the answer before
the question has been asked. There is no process of in-
quiry. There is no curiosity. They display a certain de-
gree of intelligence, but this is mostly due to the confir-
mation bias of humans, making ourselves believe that
it they indeed possess cognizance, even when it is not
present.

According to Noam Chomsky, humans have the pre-
disposition to learn languages, that is, the ability to
learn languages is encoded in our brains long before
we are born [4, 5]. The hypotheses of Chomsky state
that the reason why humans, especially children, are
able to pick up language easily is that our brains have
already been wired to learn it. He argues that even
without the basic rules of grammar, our brains are still
well adapted to learn them along the way.

In this paper, we challenge the positions of Chom-
sky about the innateness of learning languages. We
believe that by resigning to the idea that language can
only be learned innately, we lose the ability and the
curiosity to understand it from its most primary un-
derpinnings. When we commit to the idea that there’s
only one exclusive, golden way to learn languages, we
throw away all the possibilities of effectively capturing
it and properly systematizing and controlling its very
nature. We believe that Chomsky’s Language Acquisi-
tion Device (LAD) can be synthetically created and be
installed to an empty artificial brain.

One of the key questions to raise with language
learning is that can it be sped up? Normally, it would
take time for a child to acquire a basic language
skillset before they can communicate with the imme-
diate people around them. Now, can a machine learn
languages faster than a child? In order for Al systems
to even remotely approach the A-consciousness of a
two-year-old child, it must be able to communicate bi-
directionally with the external world. It must be able
to pose questions. It must be curious on its own. Mod-
ern Al systems can’t and don’t ask, to humans or to
fellow machines. They can’t dream. We will change
that.

3 Embodiment

It is considerably more difficult to build a synthetic
brain from scratch or to simulate the concept of a mind
that can readily interact with the world around it—
much like a four-year old child, a priori—than to pro-
vide a means for a learning system to interact with
the world—or a subset of it—physically. Physical in
this sense means being able to use sensory inputs to
validate existing knowledge, capture new data, to be
familiar with new inputs, and stash unknown things
for later processing.

A machine now would be happy to chuck truckloads
of data and assign meaning to them. The problem
with this approach, however, is that the meaning does
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not come from the machine itself but rather comes pre-
composed from human processing. It may be able to
categorize and differentiate dogs from cats, but intrin-
sically, it doesn’t know what they are beyond their rep-
resentations as images stored on a computer system. A
system based on machine learning may be able to rec-
ognize a cat in a picture, but when asked what hap-
pens when you startle a cat, it fails miserably.

The premise of embodiment is that that a machine
cannot attain human-level intelligence without having
some kind of body that interacts with the world. In
this view, a computer sitting on a desk, or even a dis-
embodied brain growing in a vat, could never attain
the concepts necessary for general intelligence. In-
stead, only the right kind of machine—one that is em-
bodied and active in the world—would have human-
level intelligence in its reach [6].

With the ideas of embodiment, it is possible to con-
struct sophisticated systems using initial embodied en-
tities, who are going to interact with the world, like
humans, but to a significantly less detailed resolution,
which has the ability to transfer knowledge to disem-
bodied systems one of its goals. In that way, embod-
ied systems will function as both learning scouts and
learning individuals. In contrast to human learning,
the transfer of memes from a parent to a child takes a
significantly large amount of time because of the lack
of bandwidth in the brain of a child. In addition to
that, the child still has to perceive the world around
them, in person, to learn new things.

With that in mind, the embodied-disembodied pair-
ing is proposed because we can take advantage of the
advances in technology to transfer information unidi-
rectionally, rapidly. Using this approach, a disembod-
ied system may not need to interact with the world
in order to process information because an embodied
entity is already doing the processing of raw sensory
physical inputs from the world, for the disembodied
one.

4 Minimal brain

In trying to approach one of the key problems of AGI—
A-consciousness, adaptability, and comprehension—it
is tempting to implement all the features that allow a
human to interact with other humans and with the
rest of the world. Capabilities such as vision, hear-
ing, olfaction, sense of taste, sense of touch, and mo-
bility all contribute to enabling a human to acquire
and share knowledge, test hypotheses, conduct exper-
iments, make observations, and travel to new places.
Because of these features, it makes learning very fast
and natural for humans. It also forms the cornerstones
of A-consciousness and reasoning. This is contrast
to the handling the more difficult problems of AGI—
phenomenal consciousness (P-consciousness), which
deals with moving, colored forms, sounds, sensations,
emotions and feelings with our bodies and responses

at the center [2].

It is worth noting, however, that even if some senses
are not available, a human can still mature and have
sound modes of reasoning. If a man is blind at birth
or becomes blind in the course of his life, it is still pos-
sible for him to practice strong reasoning, human-to-
human interaction, and curiosity. If a man loses the
sense of smell and hearing, he is still able to make use
of the other senses to interact with the world. There
are capabilities, however, that one must absolutely
have in order to have a functional life, like sense of
touch and mobility.

A hypothetical minimal brain would contain only
the minimum processing requirements in order to pro-
cess touch and execute mobility. With the sense of
touch, an embodied system would be able to sense
physical objects and create maps of them in its brain.
With the sense of touch, an embodied system would
be able to correctly qualify the properties of physical
objects around him. With mobility, even if an embod-
ied system with bipedal locomotion loses a leg, it will
still be able to process inputs in its environment if it
balances on one leg or move with the assistance of a
tool.

Inside a virtual reality (VR) world, a disembodied
system would be stopped from running if it hits a wall,
not because the wall has innate qualities that prevent
things from passing through it, but because of prede-
termined rules inside that world. An embodied sys-
tem with a minimal brain would be able to explore
the world and see that if it tries to walk past a wall,
it is stopped. This is similar in concept to a Roomba
wherein it creates a map of its environment by learn-
ing what it can pass through and what it can’t.

Instead of waiting for the outstanding problems of
sensory processing to be solved, a minimal brain can
already be designed, whose primary attributes are hav-
ing the minimal amount of sensory processors to be
able to interact with the world as embodied systems.
The design of a minimal brain is that it should be
able to accept new ways of processing input—such as
strong Computer Vision (CV)—in the future.

5 State of affairs

One of the most important components of current
Al systems is data and how they’re being dissected,
processed, and analyzed. How data is analyzed be-
tween intelligent systems is what makes the difference.
Some take the approach of pouring data into a pot,
stirring it, and hoping that whatever comes out of it
would make sense to a human. Others concoct fancy
rules into how it must be interpreted, taking the oppo-
site approach. The systems that we are building take
inspiration from both camps but add the flexibility of
making the knowledge that it has acquired to be mal-
leable.

Currently, Al systems have training models that will



try to cover all possible present and future scenarios.
It does so via the use of neural networks and vari-
ations of it. Such networks are commonly observed
with machine learning (ML), wherein training models
are used to build a network. Usually, ML requires a lot
of data to create a reasonable system to perform well.
This approach is already being employed in fields from
agriculture to speech recognition. ML excels at devel-
oping statistical models. However, one of the most
common problems of ML is that it is unable to cope
with situations that it has not been trained with. There
have been numerous incidents of self-driving cars that
crashed into pedestrians, trees, and overturned trucks.
Black swans are ignored.

Another form of an Al system that is still in use today
is Good Old Fashioned Artificial Intelligence (GOFAI).
One approach of GOFAI is through the use of symbols
to represent things and concepts. Trees and nodes of
connections are formed to create the relationships be-
tween these symbols. In addition to connections, prop-
erties of symbols can be encapsulated inside such sym-
bols. GOFAI excels when logic and reasoning can be
readily applied to a problem domain. However, GO-
FAI fails when the rules that are created are not suffi-
cient to describe a scenario. It fails when relationships
between symbols cannot be determined beforehand.

Finally, a less popular approach to Al that is still in
use are robots using human brain simulation. They
mimic, to a certain degree, how the nervous system
works. It works through the use of sensors to de-
tect temperature, hardness, obstacles, light, and odor.
These systems performed well when navigating rooms
and performing factory assembly tasks. Soon after, it
was realized that the intelligence that these robots pos-
sessed were fairly limited and only performed one-way
tasks.

6 Data processing

Due to limitations of existing approaches to artificial
intelligence, and the way we would like to handle
the things where there are no elegant solutions, yet,
we devised alternative methods to bridge the gaps be-
tween symbolic, sub-symbolic, robotic, and statistical
learning. In order to resolve the difficulties present in
these systems, it was imperative to determine whether
the core concepts of each can be carried over to a new
system, and whether they can be forged to work to-
gether [[10].

Data can be roughly divided into two camps: struc-
tured and unstructured. It is still a subject of de-
bate, to this day, what should be constituted as such.
Most researchers would agree, however, that struc-
tured data are the ones with a uniform set of struc-
tures and can be parsed without too much ambigui-
ties. Examples of structured data would be key-value
stores, spreadsheets, and tabular data. Unstructured
data, on the other hand, are the ones without a clear

form, or more specifically, ones whose form cannot be
easily represented in a structured manner. Examples
of unstructured data are narrative text, images, and
video.

The vast majority of unstructured data are still be-
ing handled through brute force, via one or more
forms of neural networks. Data is still processed with
human evaluators at the end, which unintentionally
gives it a bias towards human inclinations—it may
make sense to humans but not necessarily to other
forms of life that may also exhibit intelligence. When
neural networks are used to handle natural languages,
the language constructs are nothing but just a mixed
soup of ingredients to the system. NLU systems have
no intrinsic knowledge of the information that they are
processing.

With a plethora of raw data at our disposal, it be-
comes tempting to use these vast amounts of data to
attack the language problem. The problem with this
is that it’s the wrong problem that is being attacked.
What should we be focusing on instead is the com-
prehension problem. No amount of raw data is ever
going to give a supposedly intelligent system intelli-
gence without addressing the problems of understand-
ing, first.

7 Alternative approaches

When dealing with the problems of information repre-
sentation, it’s imperative to determine what are the
key data structures and algorithms to use. In soft-
ware domains like conventional relational and key-
value databases, compression, image processing, etc.,
it’s relatively easy to pick a data structure that is al-
ready in widespread use. In those industries, the high
ceilings are relatively within reach. In AL, however,
it is detrimental to use data structures that are not
custom-fit to handle the problems within that domain.

In trying to discover what should be the key qual-
ities of a novel data structure that will support the
kinds of capabilities that we would like to have, we
have to answer the following questions:

* How is information represented?

* How is it structured?

* What kinds of data can be encapsulated?

* What kinds of operations are possible?

* What are its key features?

* What distinguishes it from other approaches?
* How can it be used?

* Are there systems that already implement it?

8 Volumes

Volumes are novel data structures groups that make
it possible to perform computations, analysis, and dis-
covery, in a way that was not easy to do before. With



volumes come the concepts of frames, pools, units, and
cells. Together they make up microcosms within reg-
istries and universes.

Volumes are represented as semi-contiguous con-
nections of frames, which could either be pools or
units. A frame is a container and pointer that con-
tains navigational information in a volume. A pool is
a frame that contains a value, while a unit is a frame
that doesn’t contain a value. A “value” in this sense
means any kind of data, a pointer to another frame,
or a pointer to another volume. This is the container
property of volumes.

frame pool
f

"red dog"

empty volume
volume with data

separate
volume

Figure 1: Basic volume structure

Volumes can be disassembled and reassembled in
different configurations including, but not limited
to: frame burying—the ability to temporarily make a
frame inaccessible in a volume:

active frames buried frames

Figure 2: Frame burying

Frame banishing—the ability to send frames to the
void. The void is a place where volumes and frames
may still exist, however, they’re not considered part of
the universe while they’re there. Special procedures

are in place to make sure that they do not clash with
the existence of volumes in the universe.
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Figure 3: Frame banishing

Horizontal volume binding—the ability to connect
and bind heterogeneous types of volumes together.
This gives the ability of volumes to share properties
allowing for operations like matching, searching, and
lateral indexing.
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Figure 4: Horizontal volume binding

Vertical volume binding—the ability to bind volumes
together by linking the heads and tails of different vol-
umes. This gives the ability to extend existing proper-
ties and give more context to existing information.

Volume destructuring—the ability to decomponen-
tize volumes into arbitrary-sized frame groups; and
volume wrapping— the ability to create a globe of vol-
umes, creating a monolithic volume group.

Because of the flexibility of volumes in taking ar-
bitrary forms, we are able to make computations not
possible with traditional structures. Due to the prop-
erty of a volume being both a container and binder,
we are able to manipulate data more dynamically and
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with finer grained control. Using the proper group-
ing of volumes, we are able to create volume blocks—
configurations of volumes that contain specific traits
and qualities. Using volume blocks, we can create a
network of interrelated volume groupings.
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volume block
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volume block /
/
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S /
T

Figure 7: Interconnected volume blocks

9 Capsules

Capsules are storage mechanisms that allow one to
manage nested encapsulated key-value information.
With capsules, it is possible to create trees of rela-
tionships whilst preserving value context. When a
parent or a child capsule changes property or value,
the change becomes reflected in the whole subtree.
The idea of capsules were inspired by earlier work on
Mimix Stream Language (MSL) [[1]].

Each capsule can contain arbitrary data, including
the value of another capsule, allowing for nesting of
capsules. Information that is contained in capsules is
retrieved in the order that they were defined. In Fig-
ure B, the capsules first and last are bound to John
and Smith, respectively. The capsule alt is bound to
Big and the value of the capsule first, which is John.
Similarly, the capsule name is bound to the aggregate
values of the capsules first and last.

Sub-capsules on the other hand, are like capsules,
but they can only live inside proper capsules. They
allow data embedding, while providing a limited form
of information hiding.

Constants allow bindings to a capsule that prevent
new value bindings but allow for overlays on those con-
stants to exist. Overlays provide a shadowing mech-
anism to constants within the environments where
those constants exist. In Figure E, a constant is cre-
ated on top-level binding the value John to the capsule
first. Then, an overlay is made to temporarily bind a
new value to the capsule first inside another environ-
ment. In that environment the value of the capsule
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Figure 8: Basic and extended capsules
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Figure 9: Sub-capsules

first is Peter. However, outside of that overlay envi-
ronment, the capsule name is still bound to the origi-
nal value of John when the constant was first created.

universe

first John constants
’ name first }—)I John I

[

overlays
first Peter Y

retrieval

name first }—)I John I

Figure 10: Constants and overlays

A mini-language has been designed to support the
direct manipulation of the capsules—declarations. Dec-
larations are user-level mechanisms to interact with
the capsule system. It is a high-level language that
has a similar syntax to s-expressions. A declaration
can either retrieve a capsule value, set it to a new one,
or overwrite the value of an existing one. At the most
basic level, declarations are composed of terms, sub-
terms, and constant terms. Terms, sub-terms, and con-
stant terms correspond to capsules, sub-capsules, and
constants in the object universe.

Terms are the basic building blocks of declarations.
They can either be textual information or binary blobs.
Sub-terms are terms that are inside terms. Constant
terms, on other hand, are terms that do not change
value inside a scope. When a new value is bound to
a constant, inside another existing constant, the new,
temporary value becomes the active one. When the
new constant leaves the scope, the original value be-
comes visible again.

The declarations that correspond to Figures 8, B,
and [Ld are as follows:

($first John)

($last Smith)

($alt Big ($first))

($name ($first) ($last))

($alt) => "Big John"
($name) => "John Smith"

Listing 1: Basic terms

Term names are not case-sensitive, so
($first John) are equivalent to ($FIRST John)
and ($FiRsT John). Term values are implicitly
quoted. Accumulation of information happens serially



($first John)
($last Smith)
($name ($first) ($last) :age 100)
($city Austin)

($name :address ($city))

($name :age) => "100"
($name :address) => "Austin"
($name) => "John Smith"

Listing 2: Basic sub-terms

(%c ($first John)

($name ($first))) => "John"
(~o ($first Peter)

($name ($first))) => "Peter"
($name) => "John"

Listing 3: Constant terms and overlays

across time. All changes to a declaration are captured.
This feature enables arbitrary rollbacks.

10 Implementations

To put the aforementioned ideas to practice, software
that implement these data structures and algorithms
was written. They were written in Common Lisp (CL)E.
CL was chosen in order to adapt to the dynamic nature
of information propagation present with volumes and
capsules, to support reflective computations, and to
allow seamless code updates. Due to the fact that CL
is a standardized programming languageﬂ, the source
code is guaranteed to run far in the future with any
standards-conforming CL system.

10.1 Veda

The canonical implementation of volumes is the Veda
system. With Veda, it is possible to represent arbitrary
information while making them easy to manage. With
Veda, it becomes trivial to encapsulate entire worlds of
information as volumes. In this way, we can approach
the basic units of information as omnitraversable—one
can traverse all the places in the universe in all the
possible directions.

Any data group that is ingested into Veda effec-
tively becomes a searchable database in constant time.
Each component of the source data is indexed in that
database. Another set of algorithms is used to make
comparisons between datasets, determining similari-
ties, differences, occurrences, ambiguities, frequency,
and duplicates.

4“https://lisp-lang.org
Shttp://www. lispworks.com/documentation/
HyperSpec/Front/index.htm

10.2 Vera

The canonical implementation of capsules is the Vera
system. With Vera, it is possible to capture textual in-
formation while allowing them to be composable, dy-
namic, and reactive. The Vera system can be used
to compose text containing authoritative information
whilst allowing temporary changes. This means that
the Vera system can be used as a combination of a
free-form dictionary, encyclopedia, and narrative text.
When applied to documents, they essentially become
a living, breathing entity—the information contained
there adapts to changes to adapt to the changes of con-
tents and references.

Vera uses Veda as the backing store and serializa-
tion platform. This enables Vera to take advantage of
the volume system in Veda to perform sophisticated
operations not possible with traditional storage and
serialization mechanisms.

10.3 Vix

To facilitate interaction with the outside world, a su-
pervisor system codenamed Vix is being developed.
Vix has several purposes. First, it acts as an interface
to a human operator. It receives instructions from a
user then responds back with the results of the op-
eration. The command given to Vix can either be in
textual or voice forms. Second, it acts as the primary
multi-agent system that is dispatched to perform com-
mands. When a command is received, a swarm of Vix
agents is deployed to discover things and to solve prob-
lems. During this process, the members of the swarm
communicate with other relaying the results of their
computations. After this process, the results are col-
lected and unified and presented to a human user or
to another swarm.

Vix makes use of both Veda and Vera to achieve
these things. Veda is mainly used as the primary data
store and program center, while Vera is used for stor-
ing information about the things that the swarms col-
lect.

11 Closing remarks

It is worth mentioning that the ultimate goal of these
systems is not to settle the hard problems of AGI but to
try to solve the parts that can be computed using con-
temporary computer systems. With the use of modern
technology, we hope to reach a degree of conscious-
ness that is sufficient for generating a kind of collec-
tive consciousness using multiple small agents. We
like to think of these things in terms of honeybees—
individually and without the connection to the hive,
they behave rather simplistically. However, with a rab-
ble, they are able to form a collective consciousness—a
hive mind.


https://lisp-lang.org
http://www.lispworks.com/documentation/HyperSpec/Front/index.htm
http://www.lispworks.com/documentation/HyperSpec/Front/index.htm

Thanks to Kamil Shakirov, Chris Petersen, and Carlo
Poblete for reviewing the draft of this whitepaper.
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